ABCDEFGHIJKL
Labeling, of graphs and tables, xxixxiiLamella heat exchangers,3.1.2-5Laminar boundary layers (see Boundary layers)Laminar flow:Laminar flow control, of boundary layers,2.2.1-28/2.2.1-29Laminar sublayer (see Viscous sublayer)Laminar/turbulent transition, in microchannels,2.13.2-11/2.13.2-13Lancaster, J F,4.5.1-1/4.5.3-7Langelier index for water quality,3.17.3-3Laplace coefficient,2.13.5-2Large eddy simulation, in prediction of turbulent boundary layers,2.2.1-18Lap joint flange,4.14.3-2Latent heat (see Heat of vaporization)Laws for turbulent flows:Layers of fluid, free convection heat transfer in,2.5.8-1/2.5.8-3Le Fevre equations for free convective heat transfer,2.5.7-3Leakage between streams, in shell-and-tube heat exchangers3.3.4-4/3.3.4-5, 4.6.1-2Leakage effects, on heat transfer and pressure drop in shell-and-tube heat exchangers,3.3.1-1/3.3.11-5Leaks, in heat exchanger, sealing by explosive welding,4.11.4-4/4.11.4-5Lebedev, M E,2.5.13-1/2.5.13-10Lee and Kesler equation, for vapour pressure,5.1.3-2Lekic and Ford equation, for drop velocity in direct-contact condensers,3.20.1-1Length, conversion of units, xxxi, xlv-lviLeonard-Jones potential,2.13.7-3/2.13.7-4Leonard-Jones model system, for molecular dynamics simulation of solid-liquid vapour interactions,2.13.7-15/2.13.7-16L-footed fins,2.4.9-4Lessing rings, characteristic of, as packings for fixed beds,2.2.5-2Li equation, for critical temperature of mixtures,5.2.7-2Li, Z X,2.13.2-1/2.13.2-20Lienhard and Dhir analysis of critical heat flux in pool boiling,2.7.2-14/2.7.2-16Lienhard and Eichhorn criterion, for transition in critical heat flux mechanism in crossflow over single tube,2.7.5-3Lift force:Liley, P E,5.5.6-1/5.5.7-3Limb, D,1.9.1-1/1.9.5-11Limpet coils:Linnhoff, B,1.7.1-1/1.7.6-1Liquefaction, exergy analysis of,1.9.4-2Liquid fluidized beds,2.2.6-6/2.2.6-7Liquid fuels, properties of,3.11.3-3Liquid hold-up,2.3.1-3Liquid-liquid-gas flow,2.3.6-1/2.3.6-10Liquid-liquid flow,2.3.5-1/2.3.5-40Liquid metals:Liquid sheets, in direct contact heat transfer,2.10.2-3/2.10.2-4Liquid-solid flow (see Solid-liquid flow)Liquid-solid interfaces, fouling at,3.17.2-3Liquids:
MNOPQRSTUVWXYZas constituent in multiphase flows,2.3.1-1/2.3.1-2physical properties:
Lister, D H,3.17.9-1/3.17.9-14Ljungstrom (rotary) regenerators3.15.0-2/3.15.0-3, 3.15.1-1/3.15.1-3LMTD (see Logarithmic mean temperature difference)Loads, types of in heat exchangers,4.1.1-1Local conditions hypothesis, for critical heat flux in flow boiling,2.7.3-23/2.7.3-24Lockhart and Martinelli correlations:Lodge's rubberlike liquid (non-Newtonian),2.2.8-9Logarithmic driving force in mass transfer,2.1.5-3Logarithmic law region,2.2.1-29Logarithmic mean temperature difference1.2.4-2/1.2.4-3, 1.5.1-2/1.5.1-4, 2.1.2-2, 2.5.1-2, 3.1.1-4Longitudinal conduction, effect on performance of regenerators,3.15.8-1Longitudinal flow and heat transfer in tube banks,3.3.12-1/3.3.12-17Longitudinal fins (see Straight fins)Long-tube vertical evaporator,3.5.2-3/3.5.2-4Loss coefficient,2.2.2-15Lost work in unit operations/exergy analysis,1.9.5-1/1.9.5-11Louvered fins, in plate fin exchangers,3.9.3-1Low-alloy steels:Low-finned tubes:Low-nickel steels,4.5.4-6Lubricants, physical properties:Lucas methodsLumen (SI unit), xxviiiLux (SI unit), xxviiidensity of pure liquids,5.1.2-9/5.1.2-22density of liquid mixtures,5.2.1-3/5.2.1-7in multicomponent mixtures,5.2.3-1/5.2.4-4rheologically complex,5.3.1-1/5.3.8-3saturation property tables for,5.5.1-1/5.5.1-178surface tension,5.1.5-1/5.1.5-4at temperatures below their boiling point,5.5.10-1/5.5.10-175viscosity of liquids,5.1.4-6/5.1.4-17