ABCDEFGHIJKLMNOPQR
Rabas and Taborek correlation, for heat transfer in banks of low fin tubes,2.5.3-27Rackett equation (modified) for liquid densityRadiation:Radiation shields, in radiation heat transfer,2.9.3-12/2.9.3-13Radiation source analysis,2.9.8-7/2.9.8-8Radiative heat transfer:Radiators, automotive, construction,4.4.3-5/4.4.3-7Radiometers, application in gas radiation property measurement,2.9.5-3Radiosity, Stephan's law for,2.9.1-3Radiosity-irradiation formulations in radiative heat transfer,2.9.3-4/2.9.3-8Rankine cycle in refrigeration,3.26.2-4Ramen heat exchanger (see Lamella heat exchanger)Rao, B K2.2.8-13, 2.2.8-15, 2.5.12-16/2.5.12-17Raoult's law for partial pressure,2.7.6-1Rating of heat exchangers,3.1.2-2/3.1.2-3Rayleigh instability, in free convection,2.5.8-2Rayleigh number1.2.3-4, 2.2.1-16, 2.2.2-6Reay, D2.5.11-1/2.5.11-15, 3.13.7-1/3.13.7-3Reboilers:Reciprocal mode integrating sphere, for reflection and transmission measurements in radiation,2.9.2-7Rectangles:Rectangular cross section helical coils (see Helical coils of rectangular cross section)Rectangular ducts:
STUVWXYZcombined free and forced convective heat transfer in,3.9.5-1/3.9.3-3critical heat flux in flow boiling in,2.7.3-20laminar flow in,2.2.2-8/2.2.2-9radiative heat transfer along,2.9.3-16/2.9.3-17turbulent flow in,2.2.2-9/2.2.2-10
Rectangular enclosures, free convective heat transfer in:Rectangular fins, for plate fin exchangers2.4.9-4, 3.9.3-1Reduced pressure, correlations for pool boiling using,2.7.2-5/2.7.2-10Reference temperature:Refinery processes, fouling in,3.17.6-1/3.17.6-5Reflectance (see Reflectivity)Reflection, of thermal radiation, from solid surfaces:Reflectivity, of solid surfaces,2.9.2-3Reflectometer, heated cavity,2.9.2-7Reflux condensers,3.4.3-2Refractories, density of,5.4.1-1/5.4.1-2Refractory surfaces,2.9.3-8Refrigerants:Refrigerant 10 (see Carbon tetrachloride)Refrigerant 11 (Trichlorofluoromethane):Refrigerant 12 (Dichlorodifluoromethane):Refrigerant 13 (Chlorotrifluoromethane):Refrigerant 13B (see Bromotrifluoromethane)Refrigerant 14 (see Tetrafluoromethane)Refrigerant 20 (see Trichloromethane)Refrigerant 21 (Dichlorofluoromethane):Refrigerant 22 (Chlorodifluoromethane):Refrigerant 23 (see Trifluoromethane)Refrigerant 30 (see Dichloromethane)Refrigerant 32 (see Difluoromethane)Refrigerant 40 (see Chloromethane)Refrigerant 41 (see Fluoromethane)Refrigerant 110 (see Hexafluoroethane)Refrigerant 112 (see Tetrachlorodifluoroethane)Refrigerant 113 (see 1,1,2-Trichlorotrifluoroethane)Refrigerant 114 (see 1,2-Dichlorotetrafluoroethane)Refrigerant 114B2 (see 1,2-Dibromotetrafluoroethane)Refrigerant 115 (see Chloropentafluoroethane)Refrigerant C318 (see Octafluorocyclobutane)Refrigerant 116:Refrigerant 120 (see Pentachloroethane)Refrigerant 123 (see 1,2,3 ? Dichlorotrifluoroethane)Refrigerant 125 (see Pentafluoroethane)Refrigerant 130 (see 1,1,2,2-Tetrachloroethane)Refrigerant 134a (see 1,1,1,2-Tetrafluoroethane)Refrigerant 140a (see 1,1,1-Trichloroethane)Refrigerant 142 (see 2-Chloro-1,1-Difluoroethane)Refrigerant 142b (see 1-Chloro-1,1-difluoroethane)Refrigerant 143a (see 1,1,1-Trifluoroethane)Refrigerant 150 (see 1,2-Dichloroethane)Refrigerant 150a (see 1,1-Dichloroethane)Refrigerant 152a (see 1,1-Difluoroethane)Refrigerant 160 (see Chloroethane)Refrigerant 161 (see Fluoroethane)Refrigerant C318 (see Octafluorocylobutane)Refrigerant plant, entropy generation in,1.8.4-3/1.8.4-5Refrigeration, heat transfer in,3.26.1-1/3.26.6-5Regenerators and thermal energy storage,3.15.0-1/3.15.12-13Regimes of heat transfer, in ducts, single phase flow,2.5.1-1Reidel method, for predicting enthalpy of vaporisation,5.1.3-5Reinforcing rings, for expansion bellows,4.10.2-2Relaminarization, of turbulent flow,2.2.1-29Reichenberg method, for effect of pressure on gas viscosity,5.1.4-3/5.1.4-4Relief system design for shell-and-tube heat exchangers with tube side failure,4.17.2-3/4.17.2-14Removal of fouling deposits:Renewable fuels, properties of,3.11.3-3Renotherm, heat transfer medium,5.5.15-48Repair, of expansion bellows,4.10.2-7Residence times, in dryers:Resistance network analysis,2.9.8-5Resistance (thermal) due to fouling:Reversible (minimum) work, inReynolds number,2.1.1-3Reynolds stress models, for turbulence,2.2.1-18Rheologically complex materials, properties of:Rheological properties of drag reducing agentsRheology, shear flow experiments used in,2.2.8-3/2.2.8-4Rhine, J M,3.11.1-1/3.11.3-13Ribatski, G,2.7.9-1/2.7.9-48Ribbed tubesheet type of waste heat boiler,3.16.2-5Riblets for drag reduction,2.14.1-2/2.14.1-3Richardson number,2.2.1-13Richie, J M,3.21.1-1/3.21.2-10Ring cells, in free convection,2.5.8-2Ring stiffness, in shell-and-tube heat exchangers,4.1.2-10/4.1.2-12Ring-type flanges,4.14.3-1Rising film plate evaporator,3.7.4-4/3.7.4-6Rising/falling film plate evaporator,3.7.4-4/3.7.4-6RODbaffles, in tube bundles with longitudinal flow,3.3.12-4/3.3.12-5Rod bundles:Rohsenow correlation, for nucleate boiling,2.7.2-4/2.7.2-5Roll cells, in free convection,2.5.8-2Roller expansion, of tubes into tube sheets,4.2.6-6/4.2.6-7Rose, J W,2.6.5-1/2.6.5-11Rossby number,2.2.1-11Rotary dryer,3.13.2-4Rotary regenerators3.15.0-2/3.15.0-3, 3.15.1-1/3.15.1-3Rotating drums, heat transfer to particle bed in,2.8.3-1/2.8.3-7Rotating surface, in an annular duct2.2.1-1/2.2.1-9, 2.5.16-1/2.5.16-5Rotation, as device for heat transfer augmentation,2.5.11-7/2.5.11-8Roughness, surface:Rough walled passages, radiative heat transfer down,2.9.4-9/2.9.4-10Rubber (sponge) balls, in fouling mitigation,3.17.8-1/3.17.8-2Ruiz, C4.1.1-1/4.1.8-5, 4.1.9-1/4.1.9-8Ryznar index for water quality,3.17.3-3