ABCDEFGHIJKLMNOP
Packaged units, specification of,4.9.2-6Packed-bed condensers,3.20.1-3Packed beds (see Fixed beds)Packing characteristic, in cooling towers,3.12.2-5Packings, for cooling towers3.12.1-4/3.12.1-6, 3.12.3-1/3.12.3-2Packings, for fixed beds:Packinox heat exchanger,3.1.2-5/3.1.2-6Paikert, P3.8.1-1/3.8.9-7, 3.10.8-1/3.10.8-11Paintings and coatings, for heat exchangers,4.15.5-1/4.15.5-6Paints, spectral characteristics of reflectance of surfaces treated with,2.9.2-14/2.9.2-17Pair potentials:Palen, J W3.6.1-1/3.6.5-7, 3.17.7-14/3.17.7-18Palm, B,2.13.3-1/2.13.3-17Pancake (flat) waste heat boiler,3.16.2-4Panchal, C B,3.17.7-19/3.17.7-21Panel immersion exchangers,4.4.4-2/4.4.4-3Paraffins, normal and isonormal:Paraldehyde:Parallel channel instability, in condensers,3.4.5-3Parallel flow (see Cocurrent flow)Parallel plates (see Plates)Partial boiling in subcooled forced convective heat transfer,2.7.3-9/2.7.3-10Participating media, radiation interaction in,2.9.8-4/2.9.8-5Particle convective component, in heat transfer from fluidized beds,2.8.4-2/2.8.4-3Particle emissivity,2.9.7-2Particle Reynolds number in fixed beds,2.2.5-2Particles:Particulate fluidization,2.2.6-1Particulate fouling,3.17.2-2Pascal (SI unit), xxviiPass arrangements, in plate heat exchangers,3.7.2-5/3.7.2-7Passes, tube side,4.2.5-4Passive fire protection,4.15.6-1/4.15.6-2Passive methods, for augmentation of heat transfer, passive systems for:PD5500 mechanical design of shell-and-tube heat exchangers to,4.3.2-1/4.3.2-17Peacock, D K,4.5.9-1/4.5.9-15Pearson number,2.5.12-6Peclet number1.2.3-2/1.2.3-3, 2.1.5-2Penetrative convection, in porous media,2.11.6-9Peng, X F,2.13.3-1/2.13.3-17Peng-Robinson equation of state, application to hydrocarbons,5.2.2-2Penner's rule, in absorption of radiation by gases,2.9.5-7Pentachloroethane (Refrigerant 120):Pentadecane:Pentadecene:Pentadiene 1, 2:Pentadiene 1, trans 3:Pentadiene 1, 4:Pentadiene 2-3:Pentafluoroethane (Refrigerant 125)Pentamethylbenzene:Pentane:Pentanoic acid:1-Pentanol:1-Pentene:cis-2-Pentene:trans-2-Pentene:Pentylacetate:Pentylbenzene:Pentylcyclohexane:Pentylcyclopentane:Pentylcyclopropane, liquid properties,5.5.10-16Perfect gas (see Ideal gas)Perfluorocyclobutane, see OctafluorocyclobutanePerformance curves, for regenerators,3.15.11-1/3.15.11-3Perforated fins, in plate fin heat exchangers,3.9.3-1Perforated plates, loss coefficients in,2.2.2-20Periodic operation, of regenerator,1.1.6-1Periodic variations in temperature, thermal conduction in bodies with,2.4.5-1/2.4.5-4Permeability, in porous media,2.11.1-3Personell protection, by insulation of heat exchanger,4.15.4-1Petroleum properties,5.3.1-3PFR correlation, for heat transfer in high fin tube banks,2.5.3-33Pharmaceutical industry, fouling of heat exchangers in,3.17.6-10/3.17.6-11Phase change heat transfer in porous media,2.11.7-2Phase change materials, in augmentation of heat transfer,2.5.11-13Phase change number,2.4.4-1Phase equilibrium:Phase inversionPhase separation, as source of corrosion problems,4.5.3-5PHE (see Plate heat exchanger)Phenol:Phenols:Phenylhydrazine:Phonons, in thermal conductivity of solids,5.4.3-1/5.4.3-3Phosgene:Physical constants, nomenclature and values for, xxxiiiPhysical properties:Physical quantities, Maxwell principle for, xxPi theorum, in dimensional analysis,2.2.1-13/2.2.1-14Pinch analysis, for heat exchanger network design,1.7.1-1/1.7.6-1Pioro, I L2.2.10-1/2.2.10-18, 2.10.4-1/2.10.4-30, 5.5.16-1/5.5.16-14Pioro, LS,2.10.4-1/2.10.4-30Pin fins (see Spine fins)Pipe fittings (see Piping components)Pipe leads,4.3.2-11/4.3.2-12Piperidine:Pipes, circular:
QRSTUVWXYZaugmentation of heat transfer in,2.5.11-1/2.5.11-15boiling of binary and multicomponent mixtures in,2.7.8-1/2.7.8-14combined free and forced convection in,2.5.10-1/2.5.10-49flow boiling in: horizontal pipes,2.7.4-1/2.7.4-10free convective heat transfer from outside of,2.5.7-20/2.5.7-24heat transfer to, in fluidized beds,2.8.4-6/2.8.4-7heat transfer to liquid metals in,2.5.13-1laminar heat transfer in,2.5.1-2/2.5.1-6pneumatic conveyance (gas solids flow) in,2.3.3-1/2.3.3-2radiative heat transfer along,2.9.3-15/2.9.3-16roughened surface, radiative heat transfer along,2.9.4-9/2.9.4-10single-phase fluid flow and pressure drop in fully developed
Pipes, noncircular:Piping components:Pitting corrosion, in stainless steels,4.5.6-11/4.5.6-12Plain tube banks (see Tube banks, plain)Planck's constant,2.9.1-3Planck's law, for spectral distribution of blackbody radiation,2.9.1-3Plane shells, steady-state thermal conduction in,2.4.2-1/2.4.2-3Plastic analysis, in mechanical design,4.1.2-1/4.1.2-2Plastic deformationPlate-and-frame heat exchangers (see Plate heat exchangers)Plate coil baffles, in agitated vessels,3.14.2-3/3.14.2-4Plate fin heat exchangers1.1.4-2, 3.9.1-1/3.9.1-2Plate fins, efficiency,2.5.3-9/2.5.3-10Plate heat exchangers:Plate evaporator3.5.2-9, 3.7.4-1/3.7.4-7Plates:Plug flow:Plug flow model, for furnaces,3.11.5-1/3.11.5-2Pneumatic conveyance,2.3.3-1/2.3.3-2Pneumatic conveying dryer,3.13.7-2P-NTU method:Poiseuille law (see Hagen Poiseuille law)Polarization, of thermal radiation,2.9.2-12/2.9.2-14Polyglycols, as heat transfer media,5.5.15-24/5.5.15-27Polymers:Pool boiling,2.1.7-6/2.1.7-8Porosity, in porous media,2.11.1-1Porous media, heat transfer in,2.11.1-1/2.11.7-4Porous surfaces:Port arrangements, in plate heat exchangers,3.7.2-2Portable fouling unit,3.17.6-3Poskas, P,2.5.15-1/2.5.15-9Postburnout heat transfer (see Postdryout heat transfer; Transition boiling; Film boiling)Postdryout heat transfer:Potential functions, for use in molecular dynamics simulations,2.13.7-2/2.13.7-10Powders:Power, conversion of units, xxvii, xlv-lviPower law fluid (non-Newtonian),2.2.8-7Power plant:Prandtl number1.2.3-4, 2.1.3-3Precipitation (crystallization) fouling,3.17.2-1Precipitation hardening, of stainless steels,4.5.6-6Precommissioning, of waste heat boilers,3.16.4-1/3.16.4-2Prehenitene, see 1,2,3,4-TetramethylbenzenePressure, conversion of units for, xxvii, xlv-lviPressure coefficient:Pressure control of condensers,3.4.5-1Pressure drop:Pressure gradient:Pressure, specification of in mechanical design to EN13445,4.3.3-2Pressure testing,Pressure vessels, principle codes for,4.3.1-2Pressurised water reactor, fouling in,3.17.9-1/3.17.9-4Printed circuit heat exchanger,3.1.2-7/3.1.2-8Problem table algorithm, in pinch analysis,1.7.3-1/1.7.3-6Process heaters:Progressive plastic deformationProlate spheroids, free convective heat transfer from,2.5.7-25Promoters, in dropwise condensation,2.6.5-1/2.6.5-2Propadiene:Propane:1-Propanol:2-Propanol:Propeller agitator,3.13.2-1/3.14.2-2Propene, see propyleneProperty ratio method, for temperature dependent physical propertyPropine, see methylacetatePropionaldehyde:Propionic acid:Propionic anhydride:Proprionitrile:Propyl acetate:Propylamine:Propylbenzene:Propylchloride (see 1-Chloropropane)Propylcyclohexane:Propylcyclopentane:Propylene:1,3-Propylene glycol:Propylene oxide:Propyl formate:Propyl propionate:Propyne, see MethylacetyleneProximity agitators,3.14.2-1Pseudo-boiling in supercritical fluids,2.2.10-8Pseudo-film boiling in supercritical fluids,2.2.10-8Pseudocritical pressure,5.2.7-2Pseudocritical tempertaure,5.2.7-1/5.2.7-2Pseudocumene, see, Trimethylbenzene1, 2, 4PTFE sheeting (modified) for gaskets,4.12.2-1/4.12.2-2Pugh, S F5.4.5-1/5.4.5-5, 5.5.8-1/5.5.8-3Pulp and paper industry, fouling of heat exchangers in,3.17.6-5/3.17.6-6Pulsating heat pipes:Pulsations, use in augmentation of heat transfer,2.5.11-7Pulverized fuel water-tube boiler,3.11.2-4Pumping, lost work in,1.9.5-7/1.9.5-8Pumps, feedwater, for waste heat boilers,3.16.2-2/3.16.2-3Pushkina and Sorokin correlation, for flooding in vertical tubes,2.3.2-22PWR, (see Pressurised Water Reactor)Pyramid, free convective heat transfer from,2.5.7-25Pyridine:flow in,2.2.2-1/2.2.2-8effect of free convection on,2.2.2-5/2.2.2-7effect of temperature dependent fluid properties on,2.2.2-7friction factor,2.2.2-1/2.2.2-4influence of additives on,2.2.2-8turbulence characteristics in,2.2.2-1/2.2.2-5
transition between laminar and turbulent flows, heat transfer in turbulent heat transfer in,2.5.1-6/2.5.1-8two-phase gas-liquid flow in,2.3.2-1/2.3.2-33use in shell-and-tube heat exchangers for single-phase flow,3.3.1-1/3.3.11-5