ABCDE
E-type shells in shell-and-tube heat exchangers:Ebert and Panchal equation, for crude oil fouling,3.17.6-2Eckert number,2.2.1-13Eddy viscosity:Eddy diffusivity, of heat,2.2.1-18Edge, D,4.9.1-1/4.9.3-4Edwards, D K2.9.1-1/2.9.7-13, 5.5.5-1/5.5.5-4EEC code for thermal design of heat exchangers,4.3.1-3Effective diffusivity,2.6.3-13Effective thermal conductivity of fixed beds,2.8.1-1/2.8.1-13Effective tube length in shell-and-tube heat exchangers,3.3.5-17Effectiveness of a heat exchanger:Efficiency of fins,2.4.9-1/2.4.9-17EGM (see Entropy generation and minimisation)Eicosane:Eicosene:Ejectors, in flash distillation plant,3.22.2-14/3.22.2-23EJMA (Expansion Joint Manufacturers Association), standards for expansion bellows4.10.2-3, 4.10.2-5/4.10.2-6Elastic analysis, in mechanical design,4.1.2-1Elastic properties of solids:El-Dessouky, H,3.22.2-1/3.22.3-20Electrical enhancement processes, in heat transfer augmentation,2.5.11-9/2.5.11-10Electric fields, effect on properties of rheologically complex materials,5.3.8-1/5.3.8-2Electric fields, in augmentation of condensation,2.6.6-13Electrical process heater, specification of,4.9.2-7/4.9.2-10Electrokinetics, for heat transfer augmentation in microfluidic systems,2.5.11-10Electromagnetic theory of radiation,2.9.2-7/2.9.2-10Electronics systems, cooling of,, see also Microchannels2.13.5-1/2.13.5-2Electrostatic charges, effect onElectrostatic fields in augmentation of heat transfer,2.5.11-7Elements:Elhadidy relation between heat and momentum transfer,1.2.3-6Embedding methods for radiative heat transfer in nonisothermal gases,2.9.7-7/2.9.7-8Embittlement, of stainless steels,4.5.6-8/4.5.6-10Emission of thermal radiation, in solids,2.9.2-1/2.9.2-3Emissivity:Emitting media, interaction phenomena with,2.9.8-7/2.9.8-10Emulsions, viscosity of,2.3.5-16/2.3.5-19EN13445 (European Pressure Vessel Codes), design of heat exchangers to,4.3.3-1/4.3.3-25Enclosures:Energy, conversion of units, xxx, xlv-lviEnergy, internal (seeSpecific internal energy)Energy equation:Energy recovery, maximum, in heat exchanger network design,1.7.2-6/1.7.2-9Enhanced surfaces, fouling in,3.17.7-14/3.17.7-21Enhancement devices:Enhancement of heat transfer (see Augmentation)Enlargements in pipes:Enthalpy:(See also Specific enthalpy)Entrainment in annular gas-liquid flow2.3.2-11, 2.7.3-24Entrance effects in heat and mass transfer:Entrance lengths, hydrodynamic in pipe flow,2.2.2-11Entrance losses for tube inlet in shell-and-tube heat exchanger,2.2.7-7/2.2.7-8Entry losses in plate heat exchangers,3.7.2-2Entropy (see Specific entropy)Entropy generation and minimisationEnvironmental impact, of fouling,3.17.5-1/3.17.5-2Eotvos number:Epstein, N,3.17.2-1/3.17.2-5Epstein matrix, for fouling,3.17.3-1Equalizing rings, for expansion bellows,4.10.2-2Equation of motion, molecular, for use in molecular dynamics simulations,2.13.7-2Equilibrium interphase:Equilibrium vapor nucleus,2.7.1-3Equivalent sand roughness,2.2.1-34/2.2.2-35Ergun equation, for pressure drop in fixed beds2.2.5-3, 2.11.1-4ESDU correlations:Esters:Ethane:Ethanol:Ethers:Ethyl acetate:Ethylacetylene:Ethylacrylate:Ethylamine:Ethylbenzene:Ethyl benzoate:Ethyl butanoate:Ethyl chloride (see Chloroethane)Ethylcyclohexane:Ethylcyclopentane:Ethylether (see Diethylether)Ethyl formate:Ethyl fluoride (see Fluorethane)Ethyl iodide (see Iodoethane)Ethylene:Ethylene diamine:Ethylene glycol:Ethylene oxide:Ethylene plants, waste heat boilers for,3.16.2-5Ethylmercaptan:1-Ethylnaphthalene:2-Ethylnaphthalene:Ethyl proprionate:Ethyl propylether:Ettouney, H,3.22.1-1/3.22.3-54Euler number:European Economic Community (see EEC code for thermal design of heat exchangers)Eutectic mixtures, condensation of forming immiscible liquids,2.6.4-2/2.6.4-3Evaporation:
FGHIJKLMNOPQRSTUVWXYZdirect contact,2.10.3-1/2.10.3-4flow regimes in,2.3.2-6/2.3.2-7fouling in,3.17.7-9/3.17.7-10at an interface,2.7.1-2interfacial resistance in,2.1.7-8introduction to,2.1.7-6/2.1.7-8in plate fin heat exchangers,3.9.13-1/3.9.13-2in plate heat exchangers,3.7.12-1with submerged combustion,2.10.4-2/2.10.4-3(See also Boiling)
Evaporative coolers,Evaporative crystallisers,3.5.2-10/3.5.2-12Evaporators:Exergy, definition of,1.9.2-1/1.9.2-2Exergy analysis,1.9.1-1/1.9.5-11Exit losses for tubes in shell-and-tube exchanger,2.2.7-8Expansion bellows, for shell-and-tube heat exchangers:EJMA (Expansion Joint Manufacturers Association), standards for4.10.2-2, 4.10.2-5/4.10.2-6Expansion Joint Manufacturers Association (see EJMA)Expansion joints, mechanical design of:Expansion of tubes into tube sheets:Expansion turbine, lost work in,1.9.5-5/1.9.5-6Explicit design, of regenerators,3.15.11-1/3.15.11-9Explosively clad plate,4.5.5-1/4.5.5-6Explosive welding of tubes into tube sheets4.2.6-8/4.2.6-10, 4.11.4-1/4.11.4-6Explosive expansion joints,4.11.3-4Extended surfaces (see also Fins)Externally induced convection, in kettle reboilers,3.6.2-3Extinction coefficient,2.9.5-1Extinction efficiency,2.9.5-1Extruders, heat transfer in,3.14.3-5/3.14.3-6Eyring fluid (non-Newtonian),2.2.8-7