ABCD
Damage, sources of heat exchangers4.5.3-1/4.5.3-7, 4.6.1-1/4.6.1-2Damkohler number:Damping:Darcy model, for flow in porous media,2.11.1-3Davis and Anderson criterion, for onset of nucleate boiling,2.7.3-7Deaerators, for waste heat boilers,3.16.2-2Decal, heat transfer medium,5.5.15-45Decane:1-Decanol:1-Decene:Degradation temperature, of polymers,2.5.12-1"Del" operator (see Differential vector operators)Delaware method, for shell-side heat transfer and pressure drop, (see Bell-Delaware method)Demisters, wire mesh, for multistage flash evaporators,3.22.2-23/3.22.2-30Dener, YM,4.15.5-1/4.15.6-2Dengler and Addoms correlation, for forced convective heat transfer in two-phase flow,2.7.3-13Density:Deposition of droplets in annular flow2.3.2-21, 2.7.3-24Deposition in fouling,3.17.3-1/3.17.3-3Desalination plants:Design of heat exchangers, introduction,3.1.1-1/3.1.4-9Design procedures, for segmentally baffled heat exchangers,3.3.10-1/3.3.10-8Desuperheaters for use in association with evaporators,3.5.4-4Developing flow in ducts:Dew-poin corrosion,3.17.6-25Diathermanous fluid,2.9.1-11,1-Dibromoethane:Dibromomethane:1,2-Dibromotetrafluoroethane (Refrigerant 114B2):Dibutylamine:Dibutyl ether:Dichloroacetic acid:o-Dichlorobenzene:Dichlorodifluoromethane (see Refrigerant 12)1,1-Dichloroethane (Refrigerant 150a):1,2-Dichloroethane (Refrigerant 150):1,1-Dichloroethylene:cis-1,2-Dichloroethylene:trans-1,2-Dichloroethylene:Dichlorofluoromethane (see Refrigerant 21)Dichloromethane (Refrigerant 30):1,2-Dichlorotetrafluoroethane (Refrigerant 114)1,2,3-Dichlorotrifluoroethane (Refrigerant 123)Dielectric constant, of water,5.5.3-30Diethylamine:n,n-Diethylaniline:Diethylene glycol:Diethyl ether:Diethyl ketone:Diethylsulfide:Differential condensation:Differential formulations for nonisothermal gas radiation,2.9.7-5/2.9.7-8Differential resistance term in heat exchanger design,3.3.9-2Differential vector operators in heat conduction,2.4.1-2Diffraction models for radiative heat transfer from surfaces,2.9.4-7/2.9.4-8Diffuse surfaces, radiative heat transfer between,2.9.3-1/2.9.3-17Diffuse wall passages, radiative heat transfer in,2.9.3-13/2.9.3-16Diffusers, single-phase flow and pressure drop in,2.2.2-18/2.2.2-21Diffusion, in multi-component condensation,2.6.4-8/2.6.4-13n,n-Diffusion coefficients:1,1-Difluoroethane (Refrigerant 152a):Difluoromethane (Refrigerant 32):Diiodomethane:Diisobutylamine:Diisopropylamine:Diisopropylether:Dimensional analysis:Dimensionless groups:Dimensionless numbers (see Dimensionless groups)Dimensionless temperature difference,1.5.1-4/1.5.1-5Dimensionless time (see Fourier number)Dimethylacetylene:Dimethylamine:Dimethylaniline:2,2-Dimethylbutane:2,3-Dimethylbutane:1,1-Dimethylcyclopentane:Dimethylether:Dimethylketone:2,2-Dimethylpropane (neopentane):Dimethylsulfide:Dimpled surfaces, heat exchangers with,3.25.1-1/3.25.6-71,4-Dioxane:Diphenyl:Diphenylamine:Diphenylether:Diphenylmethane:Dipropyl ether:Diisopropyl ether:Dipropyl ketone:Direct-contact condensers,3.20.1-1/3.20.4-5Direct-contact cooling,4.4.4-8Direct-contact evaporation,4.4.4-7Direct contact heat exchangers3.1.2-9, 3.19.1-1/3.19.5-2Direct contact heat transfer,2.10.1-1/2.10.3-16Direct numerical simulation, of turbulence,2.2.1-19Dirichlet boundary condition, finite difference method,2.4.7-2/2.4.7-3Dirt (see Fouling)Dished heads:Discretization in numerical analysis:Disk-and-doughnut baffles columns, for direct contact heat transer3.19.1-2, 3.19.5-2Disk-and-doughnut baffled heat exchangers,3.3.11-2Disk turbine agitator,3.14.2-1/3.14.2-2Disks, free convective heat transfer from inclined,2.5.7-25Dispersants, for fouling control,3.17.8-7Dispersed bubble flow (see Bubble flow)Dispersed flow (liquid-liquid),2.3.5-14/2.3.5-24Dissipation of turbulent energy,2.2.1-20Distillation:Distribution:Dittus-Boelter equation, for single-phase forced convective heat transfer,2.7.3-6Dividing flow, loss coefficients in,2.2.2-21DNB (departure from nucleate boiling) (see Critical heat flux)DNS (see Direct numerical simulation)Dodecane:1-Dodecene:Donohue method, for shell-side heat transfer in shell-and-tube heat exchangers,3.3.2-2Double-pipe heat exchangers:Double segmental baffled heat exchangers,3.3.11-2Double-tube type of waste heat boilers,3.16.2-5Downward facing surfaces, free convective heat transfer from,2.5.7-13/2.5.7-15Downward flow in vertical tubes, flow patterns in gas/liquid,2.3.2-2Dowtherm A:Dowtherm J:Dowtherms, as heat transfer media,5.5.15-45/5.5.15-48Drag coefficient:Drag force:Drag reduction,2.2.8-14, 2.14.1-1/2.14.4-6Drainage, of condensate,3.18.4-1/3.18.4-2Dreitser, G,3.23.1-1/3.23.4-4Drift flux model for two-phase flows,2.3.1-7/2.3.1-9Drogemuller, P,3.21.1-1/3.21.2-10Drop-type direct-contact condensers,3.20.2-1/3.20.2-9Droplets:Dropwise condensation2.6.5-1/2.6.5-11, 2.6.6-5Dry cooling towers3.8.2-1/3.8.2-2, 3.8.8-1Dry-wall convection, in evaporation (see Postdryout heat transfer)Dry wall desuperheating (in condensation),2.6.4-6/2.6.4-7Dryers:Drying, combined heat and mass transfer in,2.1.6-1/2.1.6-2Drying loft,3.13.2-3Drying plant (see Dryers)Drying rates, prediction of,3.13.4-1/3.13.4-5Dryout:
EFGHIJKLMNOPQRSTUVWXYZintroduction,2.7.3-2as mechanism for critical heat flux: of liquid film,2.7.3-26/2.7.3-33under a vapor clot,2.7.3-27(See also Critical heat flux)
Ductile fracture as failure mode of heat exchanger,4.1.1-3Ducts, single-phase fluid flow and pressure drop in,2.2.2-1/2.2.2-28Duplex stainless steels,4.5.6-5/4.5.6-7Durand correlation for heterogeneous conveyance in solid/liquid flow,2.3.4-6Durene, see1,2,45-TetramethylbenzeneDynamic viscosity (see Viscosity)Dynamically stable foam,2.12.1-1Dyphyl, heat transfer media,5.5.15-44/5.5.15-45Dzyubenko, B,3.23.1-1/3.23.4-4